Table 3.5: Emissions reductions strategies proposed for the Local Reductions Case. | Proposed Measure | Emissions Reduction Estimate | Fraction of Anthropogenic Emissions
in the Valley or Fraction of Power
Plant Emissions | |--|--|--| | Idling reduction for
heavy-duty diesel
trucks | $NO_x = 6\%$
VOC = 10%
PM = 1.5%
if half of all trucks use idling
alternatives | $NO_x = 7.5\%$
VOC = 3.6%
PM = 0.2% | | Low- or zero-VOC paint | VOC = 97-99% of paint and solvent emissions | VOC = 11% | | Fluorescent lighting | $NO_x = 15\%$
PM = 15%
SO2 = 15%
of the valley's share of power plant
emissions, assuming all lightbulbs
are replaced | 1.5% of all VISTAS powerplant
emissions are due to Shenandoah Valley
usage | | Retrofitting school buses and city buses | $NO_x = 40\%$
PM = 40% | $NO_x = 5.8\%$
PM = 0.7% | | Green buildings | $NO_x = 15\%$
PM = 15%
SO2 = 15%
of the valley's share of power plant
emissions | 1.5% of all VISTAS powerplant
emissions are due to Shenandoah Valley
usage | | Lower storage emissions | VOC = 60% | VOC = 9% | | Clean lawnmowers | CO = 50%
$NO_x = 50\%$
VOC = 50%
PM = 50%
of lawnmower emissions if half of all mowers are replaced | $NO_x = 15\%$
VOC = 6%
PM = 10% | | Reformulated gasoline | NO _x = 26%
VOC = 31%
of gasoline-powered vehicle
emissions | $NO_x = 58\%$ $VOC = 17\%$ | | More public
transport, biking,
walking options | $CO = 10\%$ $NO_x = 10\%$ $VOC = 10\%$ $PM = 10\%$ of gasoline-powered vehicle emissions | NO _x = 58%
VOC = 17%
PM = 7% |